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Abstract. Threshold logic elements, although essentially used as gates in determinis,~ie 
combinatorial circuits, can be applied ~o switching circuits with disere~,e random inputs ~c~ 
generate discrete random variables of any probabil i ty distribution, i.e. to serve as a dis- 
crete ]probability transformer. In this paper some properties of threshold functions related 
to the realization of a probability trattsformer are studied. The principle of using threshold 
logic elements for probability transformation, is presented and the techniques for realization 
are developed. Examples are given for illustration. 

1. I n t ' r o d u c t i o n  

A discrete probability transformer, as described by Gill [1, 2], is a system 
which converts a discrete stochastic source (eit~her natural  or artificial) gener~t- 
ing the statistically independent symbols c~, a2, "-- , ar with the probabilities 
p l  , p 2 ,  • • • , p r  , respectively, into another discrete stochastic source generating 
the statistically independent symbols 5~, ~2, ' " ,  ,&~ with the probabilities 
q~, q2, " • , q~, respectively. 

Methods and techniques for generating arLificial stochastic, or pseudorand0m 
symbols are well developed and can be found in the literature. They are not the 
concern of this paper and are not discussed here. We are only concerned with the 
transformation of probability distribution. 

Probability transformation can be realized with a sequential circuit, as was 
developed by Gill [1]. The idea is to design a sequential machine with n states 
such that  with the given symbols a , ,  a.~, ..  • , ar aS the random inputs, eventually 
the machine will have a probabil i ty of q ~ / n  to be in a set of q~ states, a probability 
of q 2 / n  t o  be in a set of q2 states, • .. , and a probabil i ty of q ~ / n  to be in a set of 
q~ states, where }-~=~ qi = n. Considering the machine as a Moore model [3], we 
can associate the s random outputs  with the s sets of states, which have the de,- 
sired probability distribution. 

Instead of a general sequential machine with the feedback loop and with n 
delay units, a definite-event machine with much  fewer delay units can serve this 
purpose of probability transformation as well. I~l this case the grouping of states 
can be very simply and conveniently done by  using threshold logic elements. Our 
scheme for the probability transformer is similar to tha t  of Gill. In  fact we are 
studying the design of the "sequence identifier" with threshold logic elements. 

First, the input alphabet {m,  a : ,  • • • , a,. I is converted into a binary alphabe~ 
through a symbol converter. As pointed out b y  Gill, this conversion permits the 
usage of binary elements for the t ransformation logic. Let  this new binary rando~ 
input variable be x0, which can be either "1"  or "0",  with a probabili ty of p and 
1 - p, respectively. I t  is preferable to split the input alphabet  in such a way 
as to make p and 1 - p as close to 0.5 as possible. 
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:~0 is fed to m delay units in cascade. Let the outputs of the delay units be 
:~ , z~ , • " • , x,,~ , respectively. Then we have 

xl(t) = x 0 ( t -  i) 

x,<t) : a :~(~-  i) : a :o(~-  9) 

x,,~(t) = x o ( t -  m) 

S0w the m variables, x~, x2, - - - , x, , ,  each having a probability of p for being 
' T '  and a probability of 1 - p for being " 0 " ,  form an m-tuple. There are 
2" ,>tuples altogether, each m-tuple having a probability of 

p '  = p~(1 - p)"~-~ 

where i is the number of l ' s  in the m-tuple and m - i  is the number of O's in the 
,>tuple. 

:For the special case of p = 1 - p = ½, the probabilities of the 2 m m-tuples arc 
dl equal and are 

p ' =  (½) '~= 2 -~. 

Now if we divide the set of 2 '~ m-tuples into s disjoint subsets with N~, 
N~, ." • , N~ m-tuples in each subset such that  

~ N ~  = 2 TM 

i = l  

and such that 
Ni 

p ,  = q, (1) 
j= l  

where P.ii is the probabil i ty of the j t h  m-tuple in the i th subset, then the i t h  sub- 
set can represent the i th  output  with the desired probability q~. 

This is obviously possible, because any subset of m-tuples corresponds to a 
Boolean function, and any  Boolean function is realizable with a number of AND 
and o~t gates. 

Equation (1) can be approximated to any desired degree of accuracy by in- 
creasing m. The determination of error bounds was also developed by Gill [2], 
and will not be studied in detail in this paper. 

Figure 1 shows a schematic diagram of the probability transformer. 
To ensure independence of output  symbols, it is necessary to use a sampler or a 

pulse clock with a certain period, as discussed in Section 8. 

2. Proper t i e s  o f  T h r e s h o l d  F u n c t i o n s  

Although it is possible to realize any Boolean function with AND and oR gates, 
such a scheme has the disadvantage of using a large number of gates. Threshold 
logic elenlents are found to be particularly convenient and suitable for this 
purpose of probability transformation, and it is shown later that, if threshold logic 
dements are used the minimum number of elements required is equal to s - 1, 
or one less than the number  of output  symbols. 
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F[G. 1. Schematic diagram of a probability t ransformer using threshold logic elements 

In  order to apply threshold logic elements to p robab i l i ty  transformation, let us 
study some of the properties of threshold func t ions ,  which will be found useful 

later. 
Defini t ion.  Two threshold functions are i s o b a r i c  [4] to each other iff they can 

be realized with the same set of m input v a r i a b l e s  of the same weight vector 
(a l ,  a2, • ." , a,~) but with two different t h r e sho ld  values. 

Definit ion.  n threshold functions are isobaric  iff they can be realized with the 
same set of m input variables of the same we igh t  vec tor  (a~, a~, • •. , a,~) but wit[~ 
n different threshold values. 

For example, consider some threshold func t ions  of three variables x~, x~ and x~ 
with weights a~ = 3, a~ = 2 and a3 = 1, respec t ive ly .  

For T = 2, F1 = x i + x 2 ,  

T = 3, F,2 = x 1 + x 2 x a ,  

T = 4, F3 = xl(x2 + x3). 

Thus, F~, F2 and F3 are isobaric. 
THEOREM 1. n threshold func t ions  are i s o b a r i c  i f f  any  two of the functions x'e 

isobaric to each other. 
PROOF. (1) First we prove the necessity. I f  two of the n functions, F~ and 

F : ,  are not isobaric to each other, then any a s s i g n m e n t  of weights of the variables 
to realize the n functions that  can realize F~ w i t h  a certain threshold value T~, 
can never realize F2 ; and vice versa. Thus n o  ass ignment  can realize all the ,n 
functions, and the necessity is proved. 

(2) Next  we prove the sufficiency. Each func t i on  has a requirement on the 
pr imary ordering of weights. This requirement  m a y  be strict for the ordering be- 
tween certain weights, and may be not strict for  t he  ordering between others. For 
instance, F = Xl + x2x3 requires that  a~ > a: ~ n d  a~ > a3, but  a2 can be gTeater 
than, equal to, or less than a3. Thus any a s s ignmen t  satisfying the conditions that 
a, > a2 and a~ > a3 can realize the function F .  N o w  suppose that  out of the ~ 
functions, F~ requires that  a~ > a2. Then ilo o t h e r  function can have a require- 
ment that al _-< a~, because if a function F: r e q u i r e s  that  a~ < a : ,  then F~ and/~'~ 
cannot be realized with variables of the same w e i g h t  vector, and therefore are not 
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isobaric to each other. This contradicts the assumption. Thus if the functions are 
pairwise isobaric, the relation a~ > a~ must exist for aI1 the n functions. 

Similarly there exists no contradiction in the relations among all the weights. 
Thus there exists a certain primary ordering which satisfies all the flmctions. 

If there exists a secondary ordering among the incremental weights [5], the 
same reasoning for primary ordering of weights can be extended to secondary 
ordering. For if a function requires a certain relation between any two incremental 
weights, say/~a~ > Aa~, no other function can have a contradictory requirement. 
Thus there must exist a certain secondary ordering which satisfies all the func- 
tions. 

The same reasoning can be extended to higher orderings of weights, if they ever 
exist. Since the assignment of weights is completely determined by the orderings 
of weights, there nmst exist, an assignment which satisfies all the requirements of 
all the n functions. This completes the proof of Theorem 1. 

TfmOREM 2. Two threshold functions isobaric to each other are comparable, and 
Ihe junction having the lower threshold value contains the function having the higher 
threshold value. 

PROOF. Suppose F~ and F2 are two threshold fmletions of m variables and are 
isobaric to each other. Let 

Now 

But 

Therefore 

T1 > T2. 

• a~x~ > T,2 if ~ alx, > "1 
i = l  i ~ l  

F2 = 1, if F1 = 1. 

This means that  F~ -~ F2, 
COROLLARY 2-1. 

and if 

then 

PROOF. 

or F~ ~ F~. This completes the proot. 
If F1, F~ , • • • , F,  are n threshold functions which are isobaric 

T1 > T~ > " "  > T,~, 

F .  ~ F~-I D . . .  ~ F1. 

The proof is obvious from Theorem 2 and is omitted. 
THEOREM 3. The maximum number of isobaric threshold functions that can be 

formed from m variables for a fixed assignment of weights is equal to 2" + 1, in- 
cluding the trivial functions 1 and O. 

PROOF. Let F~ and F~+~ be two functions isobaric to each other and with 
T,~ ~ T~+I. Then from Theorem 2, F~+I ~ Fi .  

F.~+~ must contain at  least one more m-tuple than F~, for otherwise either 
F~+I and F~ would be identical or Fi would contain F~+~. Now for m variables, 
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there are 2 m m-tuples. Let  F, contain 0 m-tuple, which is the trivial function 0, 
let F2 contain one m-tuple, let Fa contain two rn-tuples, • • • , etc. Then  F2=+~ c0> 
tains 2" m-tuples and is the trivial function 1. Thus  there are at  most  2 ~ ÷ 1 

functions. This completes the proof. 
T*mOREM 4. The m i n i m a l  ass ignment  of integral weights to m variables to ob 

tain  2 m -t- 1 isobaric func t ions  is  1, 2, 4, .. • , 2 "~-~. 
P~mOF. To obtain 2 ~ -/- 1 functions from m variables, we must  have 2 ~ + I 

different threshold values, and in decreasing the threshold value from [/'~ to T~+,, 
we must  increase one and only one m-tuple to the function at a time. So every 
m-tuple must  have a weight different f rom tha t  of every other m-tuple, for if two, 
m-tuples have the same weight they will be bo th  contained or bo th  not  contained 
in the function. I n  other words, the function containing only one of them ea,~ 
not be obtained from this assignment of weights, and the total  nmnber  of fu~e~ 
tions will be less than  2 m + 1. Now each m-tuple has a weight equal to the sum of 
some i of the weights, where i = 0, 1, • •. , m. The min imum integral weight is I, 
Let  am = 1. Then  a~_l can not be 1 too, for otherwise the weights of some 
m-tuples, for instance, x,x~ . . .  2,,,_,xm and x~x2 . . .  x,,-,~2~, would be the same. 
So the minimum weight of am-, is 2. This extends to the higher weights, and the 
i th  weight must  be greater than the sum of all the previous i --  1 weights. Thus 

we have 

a,~ =: 1 = 2 0 

a, , , -1  = a,,~ q-- 1 = 2 = 2 ~ 

am-2 = a,,~ q- a,,,-1 q- t = 1 -~ 2-47 1 = 4 = 2 ~ 

a l  ~ 2 m - I  

This completes the proof of Theorem 4. 
CO~OLLAnY 4-1. For the part icular ass ignment  of  weights of Theorem 4, t~z 

fol lowing relation holds: 

N - ~  T = 2 '~ or T =  2 " ' -  N 

where N = number  of m- tuples  contained in  the func t ion ,  T = the threshold yah,', 
]?~ool~. When  T = 0, F = 1. I n  other words, the funct ion cm~tains all tk, 

2 m m-tuples. Therefore Corollary 4-1 holds for T = 0. N o w  for this partim~ar 
assignment of weights, the m-tuples have all the different integral weights rang- 
ing from 1 to 2 m - 1, and to form all the 2 TM -t- 1 functions, T is increased by 1 ata 
time and therefore has all the 2 ~ -~- 1 different values f rom 0 to 2 ~. Whet1 T is 
increased by 1, N is decreased by  1. Therefore we have T -t- N = 2 "* for 
N = 1, 2, • • • , 2 "~. This completes the proof. 

3. Realizat ion of Probabil i ty Trans former  

For the sake of simplicity of presentation, we first assume that for 
lm I~ Xl, Z2, " " • , Xm, p = 1 -- p = .}. Then  each m-tuple has a probabil i ty of ~ • 

is required to obtain an ou tpu t  which is i with a probabil i ty of ql.  Let  us expre~ 
q~ as a fraction N1/2" ,  or let N~ = [2"q~] where [2~q~] = the  integer closest to 2"~q~ ~ 
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Then NI represents the number of m-tupIes contained in the function which has 
a probability equal or closest to ql • Since each m-tuple is a random variable, we 
can choose any N1 m-tuples to form the function. Here we purposely choose those 
i\r, m4uples such that  they form a threshold function. 

Let the assigmnent of weights be 

m = 2 ''-~, a~ = 2 "~-2, . . . ,  a,,~_~ = 2, a~ = 1 

By Corollary 4-1, 

T1 = 2 "  - -  N1. 

~"~ eaIl be expressed as the sum of powers of 2 as 

T~ = c J  '~-~ + . . .  + c,,_~2 ~ -t- c,,2 ° 

where c~, c,2, • " • , c,~ are the coefficients of the powers of 2 equal to 1 or 0. 
Then the value of c~ to be 1 or 0 represents the presence or absence of x~ in the 

lowest vertex [6] (or the m4uple with the minimum weight) in the funetiom For 
instance, in Example 1 given below, for F~, the lowest vertex is z~x3x~x~x7. Ac- 
cording to the assignment of weights of Theorem 4, a~ > }-~4"2~+1 aj-. So as 
z~z,~z~x~:7 is contained in the function, x~x2 and x~x3z4 must also be contained. 
Thus the function Ft is easily found. 

Next we are to find the function F~ which has an output with a probability of 
q,,. If we give the same assignment of weight of F2 as to either F t ,  then F1 and/",2 
~re isobaric to each other, and therefore either F2 D F~ or Fi D F~. 

Since q~ and q,, correspond to two mutually exclusive events, or two disjoint 
sets of m-tuples, it seems to be impossible to use the same assignment of weights. 
However, if we use a different assignment for F2, it is still difficult to find a func- 
tion completely disjoint from Ft and yet containing the required number of 
m-tuples. Here we resort  to the property of inhibition to threshold logic elements 
so that we may  use the same assignment of weights. In  other words we shall find 
a fmie~ion/~'2 isobaric to Ft and having an output with a probability of q~ -t- q~, 
and then inhibk it with F1 so that, whenF~ has an output  of "1", F,~ will have an 
output of "0".  Then the output  of F2 will have a probability q~ which represents 
a mutually exclusive event  from that  of F~. 

The weight of inhibition should be such that  the output  of F2 is "0" whenever 
tlm output of F1 is "1" .  Let (h2 denote the weight of inhibition of F~ to F2. Then 

a~ < T~- ~ a ~  

where T~ = the threshold value of threshold logic element realizing F : ,  and 
a~ = weight of input x~ to threshold logic element realizing F~. 

The same reasoning and techniques apply to F~, F~, . . . .  , F ~ .  Thus F~ is 
realized to have a probabil i ty of q~ + q~ + qa. With inhibitions from F~ and F~, 
it has a probability of q~. Similarly F4, . • • , F~ cart be realized. 

Let us consider an example. 
Example 1. 

p = l - p = ½  

ql = 0.32 
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q2 = 0.27 

q3 = 0.23 

q4 = 0.18 

m = 7  

(1) Determinat ion of threshold function F1 with a probabi l i ty  of q~ = 0.32. 

N,  = [27 X 0.32] = [128 X 0.32] = [40.96] 

= 41 

7'1 = 1 2 8 -  41 = 87 = 64 -5 16 - 5 4 - 5  2 - 5  1 

= 1 X 2 6 + 0  X 2 5 - 5  1 X 2 4 + 0  X 23-5 1 X 22 -5 1 X 2' -5 1 X 2  ° 

The lowest vertex is xlx3xsx~x7. 

FI = xl[x2 -5 X3(Z4 -5 XsX6X7) ] .  

(2) Determinat ion of threshold funct ion F2 with a probabi l i ty  of qi -5 q2. 

ql -5 q2 = 0.32 -5 0.27 = 0.59 

N2 = [128 X 0.59] = [75.52] = 76 

7'2 = 1 2 8 - -  76 = 52 = 32 -5 16 - 5 4  

= 0 X 2 6 - 5 1 X 2 5 - 5 1  X 2 4 - 5 0 X 2 3 - 5 1  X 2 2 - 5 0 X 2 1 - 5 0 × 2 ~  

The lowest vertex is x@3x5 • 

F2 = xl -5 x2x3(x4 + xs).  

The function with inhibition from F~ is F2' = F2/~.  
(3) Determinat ion of threshold funct ion F3 with a probabi l i ty  of qi -5 q2 -~- ~ .  

q~ -5 q2 -5 q3 = 0.32 -5 0.27 -5 0.23 -- 0.82 

N3 = [128 X 0.82] -- [104.96] = 105 

T3 = 1 2 8 - -  105 = 23 -- 16 - 5 4 - 5 2 - 5  1 

= 0 X 26-5 0 X 25-5 1 X 24-5 0 X 23-5  1 X 22-5 1 X21  -51  X 2  ~ 

The lowest vertex is x~xsx6x7. 

15 = xl + x2 + x~(x~ + xsx6x~). 

The function with inhibition from F1 and F2' is F~' = F31~1/~2'. 
(4) Determinat ion of threshold funct ion F4 with a probabi l i ty  of q~ 4-q2 

5 q3 -5 q4. 

q~ -5 q2 -5 q3 -5 q4 = 0.32 -5 0.27 -5 0.23 -5 0.18 = 1.00 

F4 = 1 

The function with inhibitions from F~, F2' and F~' is 

F4' = F4P~F2'IOj = F 1 / ~ 2 t F 3  t ~=- (F~ -5 F2' -5 F3') 
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FIG. 2. Realization of Example 1 

It is simply an AND gate with inputs which are the complements of F~,/",.,' and 
Y.(, or is the complement of an OR gate with inputs F~, F~ ~ and F3'. 

In fact this last AND gate is not necessary. Suppose there are s output symbols 
~L, ~._,, • • • , ~ ,  with probabilities q~, q2, • • • , q~, respectively. Then we need 
[[og~ s] binary output  variables to represent them, where [log,., s] is the smallest 
it~teger greater than or equal to log2 s. Since the output symbols are all disjoint, 
we can use oR gates to obtain the output  variables. For instance, in Example 1, 
there are four output  symbols. So we need two oa gates to get two output vari- 
ables :ct and x2. As shown in Figure 2, z~z2 (or 11) represents fit with a proba- 
bility 0.32, z~2~ (or 10) represents ~ with a probability 0.27, 2~2~ (or 01) represents 
¢/~ with a probability 0.23, and ~ 2  (or 00) represents ~4 with a probability 0.18. 
It is obvious that  the ~tNI) gate for Ft is not required. 

4. Readjustment of Weights 

One disadvantage of the particular assignment of weights used above is the 
large magnitudes of the weights, h i  the above example, m was taken to be 7, and 
the largest weight, a l ,  is equal to 28 = 64. For m = 10, al will be 29 = 512. Such 
a large weight seems to be formidable and is certainly impractical because of 
errors in the threshold logic elements. 

However, this disadvantage is in fact not so serious as it first appears to be. As 
is well known, any threshold function carl be realized with many different assign- 
~ents of weights. The particular assignment of weights used is minimal for the 
getleration of 2"* + 1 isobaric functions, but is not minimal for any particular 
ftlI~etion. The purpose of using this assignmeat of weights ii1 the beginning is to 
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find out the, threshold function having the required number of m-tuples and ther(~. 
fore the required probability. Once the function is determined, this particular as- 
signment of weights is no longer required, and it is usually possible to readjust th+ 
weights to much smaller magnil;udes, For instanee, in Example 1, F~ can b+ 
realized with the following minimal assigmnent of iniegrM weights: 

a~ = 1 1 ,  a s  = 7 ,  a~ = 4 ,  a4 = 3 ,  aa = a6 = a7 = 1 ,  T = 18. 

For F2, 

a ~ =  5 ,  a2 = a:~ = 2 ,  a~ = a~ = 1 ,  a~ = a7 = 0 ,  T = 5 .  

A~ld for F:~, 

a ,  = a2 = 7 ,  aa = 4 ,  a4 = 3 ,  at, = a6 = a 7  = 1 ,  T = 7 .  

The realization of Example 1 is shown in Figure 2. 

5. Decomposition of Threshold Logic Elements 

If after readjustment the weights are still considered to be too large for physical 
realization, each threshold logic element may be decomposed into two or more 
threshold logic elements witi~ less input variables of smaller weights. The tech= 
niques of decomposition of threshold logic elements have been developed by 
Mattson [7] and Glinski and Yue [8], and are not discussed in this paper. The 
application of decomposition to our case is quite simple, and can be easily do~+ 
without the use of any systematic method. Let us consider Example 1 again: 

F1 ~-- X l [ X 2  

-~- Xl(X2 

Thus F~ can be realized with 
Figure 3(a). 

F2 of Example 1 is fairly simple 
F.~ can be decomposed as 

F 3  = X l  -1- 

+ x~(z~ + x~xoxd] 

-t- x3x4) -t- x~x3xbx6zT. 

two threshold logic elements, as show~l in 

and does not need to be decomposed. 

x~ + x~(x4 + xbx6x~) 

= ( ~  + x2 + x~c4) + x3zbx~:cT. 

The realization of F3 with two threshold logic elements is shown in Figure 3(b) 

6. General Case 

So far we have considered only the special case for p = 1 - p = ½. For the 
general case, although for m variables there are still 2 m m-tuples, the probability 
of each m-tuple is no longer the same, but is different depending upon how ma~y 
l 's  it has. So the problem is now to find a threshold function such that  the proba- 
bility of the output to be "1" is equal to a specified probability, say q~. 

Owing to the particular way of assigning the weights, the threshold functions 
generated are all of the same form. If suitable brackets and parentheses are used, 
each variable appears only once in the expression, and the variables appear inth¢ 
order as the ascending order of the subscripts of the variables. For instance, F~ i~ 
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X- t 

X I - __  
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( o )  R e a l i z ~ i o n  o f  F I o f  exomple  I w i t h  

two threshold logic elements. 

FIG. 3. 

Example 1 is 

x, . . . . .  F =x .xZx~(xzxsx6xT ) 
X 2 . . . . . .  

"'4 - ~  

( b )  Re( l l i zo t ion  o f  F 3 o f  example l w i th  
t w o  th resho ld  log ic  elements 

Examples of decomposition of threshold logic elements 

F1 -- xl[x~ + z~(x4 + xsx#7)]. 

From this expression, the number of m-tuples contained in it can easily be found. 
This can be more clearly seen if F1 is changed from the minimal sum-of-products 

form to the following form: 

F~ = x~[x2 + ~2~c3(x4 + 2~x6xT)]. (2) 

h term like xl contains half of the 2 ~ m-tuples, a term like x~x2 contains { of the 
m-tuples, etc. With the complemented variables introduced, all Uhe terms become 
disjoint, and the total number of m-tuples of the function is now equal to the sum 
0t' the m-tuples contained in each term. So the total number of m4uples contained 
in F~ is equ~l to 2 ~ multiplied by the above expression with each variable, com- 
plemented or uncomplemented, replaced by ½. Thus 

N1 128 X i i i i = d~  + ½ x ~(~- + ½ x i x ½ x ½)] 

= 128 X ~2~- 

= 41 

This checks with Example 1. 
For the special ease of p = 1 - p = ½, since q~ = N~/2 TM, the probability of F~ 

is simply the expression of F~ in the form of Equation (2) with each Variable re- 
placed by ½. For the general case, however, this is not true, and the expression for 
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probability should be slightly modified. Each uneomplemented variable should be 
replaced by p, and each complemented variable should be replaced by (1 - i0). 
Thus the probability of F1 becomes 

ql ~ p{p + (1 - p)p[p q- (1 - p)p3]}. 

Now the problem reduces to: Given p, (1 - p) and ql (m depends on error 
tolerance and may be assumed to be given too), to find the t, hreshold function F~ 

The procedure of doing this is as follows: 
Step (1). If q, < p, divide q~ by p. If the quotient is still less than p, divide it 

by p again. Repeat this until the quotient is greater than or equal to p. Denote 
the number of times of division by d~. Thus q~ is already divided by p~ to be- 
come greater than or equal to p. Then subtract p from the last quotient, which is 
greater or equal to p, to obtain the difference D. Go to step (3). 

Step (2). If qt >= p, subtract p from q, to obtain the difference D. Go to 
step (3). 

Step (3). If the difference in Step (1) or (2) is zero, the procedure is already 
completed. If the difference D is greater than zero, divide D by ( 1 - p). Get the 
quotient ql'. Then treat q~' as q~ and repeat steps (1) or (2). In step (1) the new 
number of times of division is denoted by d2. 

Step (4). Repeat steps (1) through (3) until the mixed highest power of 
p and (1 - p) (in the last term) is equal to m. 

Step (5). Arrange the p's and (1 - p) 's  in the following form, which is equal 
or closest to q~ for the given m: 

ql -~ pd~{p 4- (1 -- p)p~[p + (1 -- p)p~8(p + . . .  )1}. (3) 

Step (6). Form Fi according to Equation (3),  with each p replaced by an un- 
complemented variable and each (1 - p) replaced by a complemented variable, 
starting from xl with each uncomplemented variable appearing once and only 
once in the ascending order of the subscript and with each complemented vari- 
able having the sarne subscript as the preceding uneomplemented variable. 

Let us consider the above example again, but  with different p and (1 - p). 
Example 2. 

(1) Determination of F~. 

p = 0.7 

1 - - p = 0 . 3  

ql = 0.32 

q~ = 0.27 

q3 = 0.23 

q4 = 0.18 

m = 7  

qi = 0.32 < 0.7 

0.32 
- 0.457 < 0.7 

0.7 
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0.457 
- 0.653 < 0.7 

0.7 

0.653 
-- 0.947 > 0.7 

0.7 

d l = 3  

0.947 -- 0.7 = 0.247 

0.247 
- 0.823 > 0.7 

0.3 

d2 ~ 0 

0.823 -- 0.7 = 0.125 

0.123 
- 0 . 4 1  < 0.7 

0.3 

0.41 
- 0.586 < 0.7 

0.7 

0.586 
- 0.837 > 0.7 

0.7 

~ = 2  

The mixed highest power is a l ready 7. So we stop here. 

(]1 ~--- 0 . 3 2  

0.7a[0.7 + 0.3(0.7 + 0.3 × 0.7")] 

= 0,327 

FI = x~x2x,~[x4 + ~4(x5 + ~25x6zT)] 

= XlX2X3(X4 -~- Z5 "~- Z6X7) 

The minimal  ass igmnent  of integral  weights is 

a~ = a2 = a3 = 5 ,  a4 = a5 = 2 ,  a s  = a7 = i ,  

(2) Determinat ion of/; '2.  

T =  17. 

ql + q2 = 0.32 -4- 0.27 = 0.59 < 0.7 

0.59 
- 0.843 > 0.7 

0.7 

d l =  i 

0.843 - 0.7 = 0.143 

0.143 
- 0.477 < 0.7 

0.3 

0.477 
- 0.681 < 0.7 

0.7 
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(3) 

0.681 
- 0.973 :> 0.7 

0.7 

d2 ~ 2 

0.973 - 0.7 = 0.273 

0.273 
- 0 . 9 1  > 0.7 

0.3 

d3 = 0 

0.91 -- 0.7 = 0.21 

0.21 
- O . 7  = O.7 

0.3 

d~ = 0 

O.7 - -  0.7 = 0 

T h e  di f ference is e q u a l  to  zero.  So we  s top  here .  

q l W q 2  = 0.59 

0.7 I0.7 ~- 0.3 X 0.72[0.7 + 0 .3 (0 .7  + 0.3 X 0.7)]} 

= 0.590 

= xl[x2 + x3x4(x5 + x6 + xT)] 

F : '  = F2~1 

al = 10, a 2 - -  7, a3 = a4 = 3, a~ = a6 = a7 = 1 

7' = 17 

D e t e r m i n a t i o n  of F~ .  

ql + q2 + q3 = 0.32 -b 0.27 ~- 0.23 = 0.82 :> 0.7 

d~= 0 

0.82 - -  0.7 = 0.12 

0.12 
- 0.40 < 0.7 

0.3 

O.4O 
- 0.571 < 0.7 

0.7 

0.571 
- 0.816 > 0.7 

0.7 

d2 = 2 

0.816 - -  0.7 = 0.116 

0.11.6 
- 0.387 < 0.7 

0.3 

0.387 
- -  = 0.553 < 0.7 

0.7 
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0.553 
.................... 0.790 > 0.7 

0.7 

d~ = 2 

0.790 -- 0.7 = 0.090 

0.090 
................ 0.300 < 0.7 

0.3 

The [nixed highest  p o w e r  of  p and  (1 - p) is a l ready 7. So we s top here. 

q t + q 2 +  qa = 0.82 

0.7 -~- 0.3 X 0.7"[0.7 + 0.3 X 0.72(0.7 -F 0.3)]  

= 0.7 + 0.3 X 0.72(0.7 ÷ 0.3 X 0.7 ~) 

= 0.825 

F3 = z~ + 2~x2x3(x4 + :~4xsz6) 

= x~ + x,~:c~(x~ + x~z~) 

Fa' = F31;'lF'2' 

al = 8, a2 = aa = 3, a4 --- 2, a5 = a6 = 1, a7 = 0 

T =  8 

(4) Dete rmina t ion  of  F 4 .  

q~ + q2 + q3 -~ q4 = 0.32 + 0.27 + 0.23 + 0.18 = 1.00 

F4 = 1 

F /  = Fd,~J'~' t?( = ff'~¢2'I73' 

275 

7. Error Bounds 

The error in using t h r e s h o l d  logic elements  as a probabi l i ty  t ransformer  de- 
pends on m. The  larger  m, the  smaller  the error. For  p = 1 - p = ½, since N~ is 
the closest integer  to  2'~q2, the  error bound  is half of the  probabi l i ty  of the  
m-tuple, or 1 X 1 /2  " = 1 / 2  "~+~. For  some probabilit ies,  such as q2 and  qa in the 
above example, the  p r o b a b i l i t y  is the  difference between two probabili t ies each 
with an error b o u n d  of  1/(2'~+1). So the  error bound  is twice this, or  

In the case of m = 7, 

1 1 
e = 2 ×  

2,,~+1 2.~" 

1 1 
- - 0.0078 = 0.78%. 
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For p ~ 1 --  p # ½, e a c h  m- tup le  has a different probabil i ty .  T h e  error bound  
is more difficult to  ca lcu la te .  I t  is no t  ~ t t empted  to  determine the  exact  error 
bound here. Howeve r ,  it is r ougMy es t imated t h a t  for the  same m, the error 
bound for p ~ 1 = p ~ } is a little larger t h a n  t h a t  for p = 1 - p = ½, as in- 
dicated in the  a b o v e  examples .  
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8. Sampling or Cloclc Pulse 

I t  is assumed that  the input symbol is random. Thus the input at time t is 
independent of the inputs a t  any  previous time. However, in forming the new 
input symbols, m delay units are used, and the input symbols are therefore 
dependent upon the past m input, symbols. In  order to obtain random outpu{ 
variables completely independent of past values, it is necessary to take values of 
either the input or the output  at  t ime intervals of at  least m times the time interval 
of the input. For level inputs and outputs, this (:an be accomplished by using a 
sampler at the input or the output, synchronized to the input time and with a 
sampling period T > mr, where r is the period of input time intervah In  the case 
of ptfise inputs and outputs, clock pulses with a period of T > mr can be applied 
to the input delay units. 

9. Conclusions 

From the above analysis it is seen that  probabili ty transformer can be realized 
with threshold logic elements, to a reasonable degree of accuracy. For s output 
probabilities, if one threshold logic element is used for each function, only 
s - 1 threshold logic elements are required, together with [log2 s] OR gates. S0 
the circuit thus realized is much simpler than a corresponding sequential eireui~ 
or that realized with AND arid OR gates. High accuracy can be obtained by usi~lg 
larger number of delay units. In  tha t  case the weights of the variables tend to be 
large. However, this can be remedied by  the decomposition of each threshold 
logic element into two or more threshold logic elements. Thus small error tolerance 
can be achieved at  the expense of number of threshold logic elements, and the 
resulting realization can still be fairly simple. So the use of threshold logic ele- 
ments for probability t ransformation appears to be a neat and simple circuit 
realization. 

RECEIVED July, 1964 
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