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Abstract. Threshold logic elements, although essentially used as gates in determinist;,
combinatorial circuits, can be applied to switching circuits with discrete random inputs 1,
generate discrete random variables of any probability distribution, i.e. to sorve as g (is.
crete probability transformer. In this paper some properties of threshold functions relatey
to the realization of a probability transformer ave studied. The principle of using threshojg
logic elements for probability transformation is presented and the techniques for realizating
are developed. Examples are given for illustration.

1. Introduction

A discrete probability transformer, as described by Gill {1, 2], is a system
which converts a discrete stochastic source (either natural or artificial) generat-
ing the statistically independent symbols a1, as, -+, @, with the probabilities

Py, P2, Dr, respectively, into another discrete stochastic source generating
the statistically independent symbols Bi, B2, -+, 8. with the probabilities
G, 92, ", s, vespectively.

Methods and techniques for generating artificial stochastic, or pseudorandom
symbols are well developed and can be found in the literature. They are not the
concern of this paper and are not discussed here. We are only concerned with the
transformation of probability distribution.

Probability transformation can be realized with a sequential circuit, as was
developed by Gill {1]. The idea is to design a sequential machine with n states
such that with the given symbols e , a2, - - -, a, as the random inputs, eventually
the machine will have a probability of ¢;/n to be in a set of ¢, states, a probability
of qo/n to be in a set of g, states, - -+, and a probability of ¢,/n to be in a set of
¢, states, where Y j-1 q; = n. Considering the machine as a Moore model [3], we
can associate the s random outputs with the s sets of states, which have the de-
sired probability distribution.

Instead of a general sequential machine with the feedback loop and with =
delay units, a definite-event machine with much fewer delay units can serve this
purpose of probability transformation as well. In this case the grouping of states
can be very simply and conveniently done by using threshold logic elements. Our
scheme for the probability transformer is similar to that of Gill. In fact we are
studying the design of the “sequence identifier’” with threshold logic elements.

First, the input alphabet {a1, a2, - -+, &} is converted into a binary alphabet
through a symbol converter. As pointed out by Gill, this conversion permits the
usage of binary elements for the transformation logic. Let this new binary randor
input variable be xo , which can be either “1” or “0”, with a probability of p and
1 — p, respectively. It is preferable to split the input alphabet in such a way¥
as to make p and 1 — p as close to 0.5 as possible.
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1 is fed to m delay units in cascade. Let the outputs of the delay units be

g eyt T respectively. Then we have
Q71<Zf) = Q}g(i et 1)
l?g(t} == ,”(71<Z — 1) B Qj()(t, — 2)
xm(t) - ?L‘o(t — 77?/)
Now the m variables, @1, @y, - -+, & , each having a probability of p for being

«17 and a probability of 1 — p for being “0”, form an m-tuple. There are
9" m-tuples altogether, each m-tuple having a probability of

L)

P =p(l-p)
where 7 is the number of 1’s in the m-tuple and m—1 is the number of 0’s in the
m-tuple.

For the special case of p = 1 — p = }, the probabilities of the 2" m-tuples are
allequal and are

=) =2

Now if we divide the set of 2" m-tuples into s disjoint subsets with N,

N:, -, N, m-tuples in each subset such that
2N =2"
i=1

and such that

q:i (1)

il

Ni
_Z Dii
j=1

where pg; 18 the probability of the jth m-tuple in the 7th subset, then the 7th sub-
seb can represent the 7th output with the desired probability ¢; .

This is obviously possible, because any subset of m-tuples corresponds to a
Boolean function, and any Boolean function is realizable with a number of Axp
and or gates.

Equation (1) ean be approximated to any desired degree of accuracy by in-
creasing m. The determination of error bounds was also developed by Gill [2],
and will not be studied in detail in this paper.

Figure 1 shows a schematic diagram of the probability transformer.

To ensure independence of output symbols, it is necessary to use a sampler or a
pulse clock with a certain period, as discussed in Section 8.

2. Properties of Threshold Functions

Although it is possible to realize any Boolean function with ANp and or gates,
such a scheme has the disadvantage of using a large number of gates. Threshold
logic elements are found to be particularly convenient and suitable for this
Purpose of probability transformation, and it is shown later that if threshold logic
elements are used the minimum number of elements required is equal to s — 1,
or one less than the number of output symbols.
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Fig. 1. Schematic diagram of a probability transformer using threshold logie elements

In order to apply threshold logic elements to probability transformation, let us
study some of the properties of threshold functions, which will be found useful
later.

Definition. Two threshold functions are Zsobaric [4] to each other iff they can
be realized with the same set of m input variables of the same weight vector
(a1, @z, -+, @) but with two different threshold values.

Definition. n threshold functions are isobaric iff they can be realized with the
same set of m input variables of the same weight vector (ay,as, - -+, tn) but with
n different threshold values.

For example, consider some threshold functions of three variables x; , x: and &
with weights @, = 3, @, = 2 and a3 = 1, respectively.

For T = 2, F1 =21 + T 5
T =3, Fy = z1 + wors
T = 4_, Fyg = :vl(xg + 1123).

Thus, Fy, F; and F; are isobaric.

TueoREM 1. n threshold functions are isobaric iff any two of the functions are
isobaric to each other.

Proor. (1) First we prove the necessity. If two of the n functions, Fy and
F», are not isobaric to each other, then any assignment of weights of the variables
to realize the n functions that can realize F; with a certain threshold value T,
can never realize F; ; and vice versa. Thus no assignment can realize all the n
functions, and the necessity is proved.

(2) Next we prove the sufficiency. Each function has a requirement on the
primary ordering of weights. This requirement may be strict for the ordering be-
tween certain weights, and may be not strict for the ordering between others. For
instance, F' = x; 4 .5 requires that a; > a; and a1 > as, but as can be greater
than, equal to, or less than a; . Thus any assignment satisfying the conditions that
a1 > azand @, > a; can realize the function #. Now suppose that out of the
functions, F; requires that a; > a,. Then no other function can have a require:
ment that a; < s, because if a function Fy requires that a; = az , then Fyand [z
cannot be realized with variables of the same weight vector, and therefore are nob
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isobarie to each other. This contradicts the assumption. Thus if the functions are
pairwise isobaric, the relation a; > a, must exist for all the n functions.

Similarly there exists no contradiction in the relations among all the weights.
Thus there exists a certain primary ordering which satisfies all the functions.

[f there exists a secondary ordering among the incremental weights [5], the
ame reasoning for primary ordering of weights can be extended to secondary
ordering. For if a function requires a certain relation between any two incremental
weights, say Aa; > Aaz , no other function can have a contradictory requirement.
Thus there must exist a certain secondary ordering which satisfies all the func-
tions.

The same reasoning can be extended to higher orderings of weights, if they ever
exist. Since the assignment of weights is completely determined by the orderings
of weights, there must exist an assignment which satisfies all the requirements of
all the n functions. This completes the proof of Theorem 1.

ToeorEM 2. Two threshold functions isobaric lo each other are comparable, and
the function having the lower threshold value contains the function having the higher
threshold value.

Proor. Suppose F and Fy are two threshold functions of m variables and are
isobaric to each other. Let

Ty > T,.
Now
Fo=1 ift Z:azm,z T
But
i}iam > T, if ;am > T
Therefore

Fy=1, if Fi=1

This means that Fy, — Fy, or F. D F;. This completes the proot.
CoroLLARY 2-1, If Fy, F, - -+, F, are n threshold functions which are isobaric
ond if

Ty>Te> > Th,
then
F,DF,1D - DF;.

Proor. The proof is obvious from Theorem 2 and is omitted.

TurorEM 3.  The mazximum number of isobaric threshold functions that can be
formed from m variables for a fized assignment of weights is equal to 2" -+ 1, in-
cluding the trivial functions 1 and 0.

Proor. Let F; and Fiy be two functions isobaric to each other and with
Ti> Ty, . Then from Theorem 2, Fiy1 D Fi.

Fiii must contain at least one more m-tuple than F;, for otherwise either
Fiyyand F; would be identical or F'; would contain F,,, . Now for m variables,
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there are 2" m-tuples. Let F; contain 0 m-tuple, which is the trivial function g
let I, contain one m-tuple, let F; contain two m-tuples, - - -, ete. Then Fym,, coni
tains 2" m-tuples and is the trivial function. 1. Thus there are at most 2" + |
functions. This completes the proof.

TuroreM 4. The minimal assignment of integral weighls to m variables to o
tain 9 + 1 isobaric functions is 1,2, 4, -+~ , 2",

Proor. To obtain 2" + 1 functions from m variables, we must have 2™ +
different threshold values, and in decreasing the threshold value from 7'; to T,
we must increase one and only one m-tuple to the function at a time. So ever‘,;
m-tuple must have a weight different from that of every other m-tuple, for if w0
m-tuples have the same weight they will be both contained or both not contained
in the function. In other words, the function containing only one of them cay
not be obtained from this assignment of weights, and the total number of func.
tions will be less than 2™ -+ 1. Now each m-tuple has a weight equal to the sum of

some i of the weights, where 7 = 0,1, - - - , m. The minimum integral weight is 1,
Let a, = 1. Then @, can not be 1 too, for otherwise the weights of some
m-tuples, for instance, Ty -+ - Em-aw and 2122 * +* LoiTm would be the same.

S0 the minimum weight of @, is 2. This extends to the higher weights, and the
ith weight must be greater than the sum of all the previous ¢ — 1 weights. Thus
we have

a1n»—].=am'+‘1=2=2l
afm~2::am+a‘m——1+1:]- +2+1:4:2

a — 2m-—\

This completes the proof of Theorem 4.
CoROLLARY 4-1. For the particulor assignment of weights of Theorem 4, the
following relation holds:

N+T=92 o T=2"—-N

where N = number of m-tuples contained in the function, T = the threshold value.

Proor. When T = 0, F = 1. In other words, the function contains all the
2™ m-tuples. Therefore Corollary 4-1 holds for T' = 0. Now for this particular
assignment of weights, the m-tuples have all the different integral weights rang-
ing from 1 to 2" — 1, and to form all the 2" 4- 1 functions, T'is increased by 1 ata
time and therefore has all the 2" + 1 different values from 0 to 2”. When T'is
increased by 1, N is decreased by 1. Therefore we have 7 + N = 2" for
N =1,2, -+ ,2" This completes the proof.

3.  Realization of Probability Transformer

For the sake of simplicity of presentation, we first assume that f;‘;,r
&y, %, ,&m, P =1—p =% Then eachm-tuple has a probability of §". 1t
is required to obtain an output which is 1 with a probability of ¢1. Let us expres?
g1 a8 a fraction N1/2", or let Ny = [27q,] where [2"g1] = the integer closest to 2°¢: -
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Then N, represents the number of m-tuples contained in the function which has
a probability equal or closest to g . Since each m-tuple is a random variable, we
can choose any N1 m-tuples to form the function. Here we purposely choose those
¥, m-tuples such that they form a threshold function.

Let the assignment of weights be

m2
]

-1
a = 2 y Gz =32 ',am‘1=2, Ay, =

By Corollary 4-1,
T,=2" - N;.
7, can be expressed as the sum of powers of 2 as
Ty= 2" 4+ oo 42+ 0,2

where ¢1, 62, * -+, Cm Are the coeflicients of the powers of 2 equal to 1 or 0.

Then the value of ¢; to be 1 or 0 represents the presence or absence of z; in the
lowest vertex [6] (or the m-tuple with the minimum weight) in the function. For
instance, in Example 1 given below, for Fy, the lowest vertex is xwszpre; . Ac-
sording to the assignment of weights of Theorem 4, a; > X Ty a;. So as
wtstssry 18 contained in the funetion, xiz, and mwsw, must also be contained.
Thus the funetion F; is easily found.

Next we are to find the function F; which has an output with a probability of
. If we give the same assignment of weight of F; as to either 1, then Fyand F,
are isobaric to each other, and therefore either Fo D Fior Fi D F,.

Since ¢; and ¢» correspond to two mutually exclusive events, or two disjoint
sets of m-tuples, it seerns to be impossible to use the same assignment of weights.
However, if we use a different assignment for F» , it is still difficult to find a funec-
tion completely disjoint from F; and yet containing the required number of
m-tuples. Here we resort to the property of inhibition to threshold logic elements
50 that we may use the same assignment of weights. In other words we shall find
a function Fy isobaric to F, and having an output with a probability of ¢1 + ¢z,
and then inhibit it with F; so that when F1 has an output of “1”, F, will have an
output of “0”. Then the output of F, will have a probability ¢, which represents
amutually exclusive event from that of Fy .

The weight of inhibition should be such that the output of Fsis “0” whenever
the output of Fy is “1”°. Let aq denote the weight of inhibition of F; to ;. Then

m
g < Ty — Z a;
i=1

where T, = the threshold value of threshold logic element realizing Iy, and
a; = weight of input x: to threshold logic element realizing Fs .

The same reasoning and techniques apply to Fs, Fs, -+, Fn. Thus Fyis
realized to have a probability of g1 + ¢2 + ¢s . With inhibitions from F; and F,,
it has a probability of ¢; . Similarly Fi , - - - , F can be realized.

Let us consider an example.

Ezample 1.

il

1

p=1~—p=§
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g. = 0.27
g = 0.23
gs = 0.18
m =7

(1) Determination of threshold function F, with a probability of ¢; = 0.32,
Ny = [27 X 0.32] = [128 X 0.32] = [40.96]

= 41
Ty =128 — 41 = 87 =64 + 16 +4 + 2+ 1
IXPHOXP+1X2H+0X2P+1IX2P+1X2"+1X2

i

The lowest vertex is a12ststely .
Iy = xxe -+ 2a(@s + xszewr)].
(2) Determination of threshold function Fy with a probability of ¢1 + ¢,.
¢+ ¢ =032 + 027 = 0.59
(128 X 0.59] = [75.52] = 76
128 — 76 = 52 = 32 4+ 16 + 4
OX2+1X2P+1X2+0X2+1X2+0X2 +0x2°
The lowest vertex is asrsts .
Fy = a1 + @xs(as + 25).

The funetion with inhibition from F, is Fy = Foff, .
(3) Determination of threshold function F; with a probability of ¢1 + ¢ + g3

G+ gt g =032+ 027 + 023 = 0.82
N; = [128 X 0.82] = [104.96] = 105
Ty=128—105=23 =16+4+2+1
=0X2+0X2P+IX2+0XP+1X2+1X2+1x2
The lowest vertex is zgesvers .
Iy = 21 + @ + x3(xs + @svexs).

The function with inhibition from Fy and ¥, is Fy = FyF\Fy .
(4) Determination of threshold function F, with a probability of ¢ + %
+ g+ qs.

@i+ ¢+ ¢+ q=032+4+027 + 023 + 0.18 = 1.00
F4 = ].

N»
T,

ff

if

i

The funetion with inhibitions from Fy | Fy’ and Fj is

F/ = FFF/F} = iF/F) = (Fy + FY + Fy)
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Fic. 2. Realization of Example 1

It is simply an axp gate with inputs which are the complemcnts of Fy, Fy and
Fy, or is the complement of an or gate with inputs Fy, Fy and F;’.

In fact this last AND gate is not necessary. Suppose there are s output symbols
i, B2y -+, Bs, with probabilities ¢1, g2, - - - , ¢., respectively. Then we need
[log; s] binary output variables to represent them, where [log, s} is the smallest
integer greater than or equal to logs s. Since the output symbols are all disjoint,
we can use OR gates to obtain the output variables. For instance, in Examplel,
there are four output symbols. So we need two or gates to get two output vari-
ables ; and x5 . As shown in Figure 2, 2z, (or 11) represents 8, with a proba-
bility 0.32, 212: (or 10) represents 8: with a probability 0.27, 7,2, (or 01) represents
8; with a probability 0.23, and 22, (or 00) represents 8, with a probability 0.18.
Itis obvious that the aND gate for F, is not required.

4. Readjustment of Weighls

One disadvantage of the particular assignment of weights used above is the
large magnitudes of the weights. In the above example, m was taken to be 7, and
the largest weight, a, , is equal to 2° = 64. Form = 10, a will be 2’ = 512. Such
8 large weight seems to be formidable and is certainly impractical because of
errors in the threshold logic elements.

However, this disadvantage is in fact not so serious as it first appears to be. As
is well known any threshold function can be realized with many different assign-
ments of Weltrhts The particular assignment of weights used is minimal for the
generation of 2™ 4 1 isobaric functions, but is not minimal for any particular
funetion. The purpose of using this assignment of weights in the beginning is to
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find out the threshold function having the required number of m-tuples and there.
fore the required probability. Once the function is determined, this particular as.
signment of weights is no longer required, and it is usually possible to readjus the
weights to much smaller magnitudes. For instance, in Example 1, Fy can be
realized with the following minimal assignment of integral weights:

w =11, =7 a=4 =3 a=06a=a06=17T=18
For F.,

a=5 a=a =2 @ =a=1 @=a=07T=35
And for Fy,

b= =17 G=4 a=3, ¢G=ag=¢=1T=7

The realization of Example 1 is shown in Figure 2.

5. Decomposition of Threshold Logic Klements

If after readjustment the weights are still considered to be too large for physical
realization, each threshold logic element may be decomposed into two or more
threshold logic clements with less input variables of smaller weights. The tech-
niques of decomposition of threshold logic elements have been developed by
Mattson [7] and Glinski and Yue [8], and are not discussed in this paper. The
application of decomposition to our case is quite simple, and can be easily done
without the use of any systematic method. Let us consider Example 1 again:

I,

i

xl[x.‘l -+ 173(1}4 -+ $5175:L‘7)]
= 551(-702 -+ »’153374) -+ L3567 .

Thus F; can be realized with two threshold logic elements, as shown i
Figure 3(a).
Iy of Example 1 is fairly simple and does not need to be decomposed.
Iy can be decomposed as
F:; I -+ 29 -+ .753(134 + 11551136:37)

= (&1 + @ + xax4) + Tswszery .

The realization of F; with two threshold logic elements is shown in Figure 3(b).

6. General Case

So far we have considered only the special case for p = 1 — p = &. For the
general case, although for m variables there are still 2" m-tuples, the probability
of each m-tuple is no longer the same, but is different depending upon how many
I’s it has. So the problem is now to find a threshold function such that the probs-
bility of the output to be “1” is equal to a specified probability, say ¢ -

Owing to the particular way of assigning the weights, the threshold functions
generated are all of the same form. If suitable brackets and parentheses are used,
each variable appears only once in the expression, and the variablesappear inthe
order as the ascending order of the subscripts of the variables. For instance, Fyin
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XXX X X))

{a) Redlization of F, of example | with
two threshold logic elements,

F X X oX (X +X5X6X,)

(b} Realization of F, of example | with
two threshold logic elements

Fra. 3. Examples of decomposition of threshold logic elements

Fxample 1 is
Fy = aafes + 25(ws + 2s2ev7)].

From this expression, the number of m-tuples contained in it can easily be found.
This can be more clearly seen if F; is changed from the minimal sum-of-products
form to the following form:

Fi = xif@s + Tows(s + Tevsvexs)]. (2)

A term like z, contains half of the 2™ m-tuples, a term like z:, contains § of the
m-tuples, ete. With the complemented variables introduced, all the terms become
disjoint, and the total number of m-tuples of the function is now equal to the sum
of the m-tuples contained in each term. So the total number of m-tuples contained
in F'y is equal to 2" multiplied by the above expression with each variable, com-
plemented or uncomplemented, replaced by &. Thus

Ny= 128 X 35 + § X 33 + 3 X 3 X § X 3)]
= 128 X 145
= 41

This checks with Example 1.
For the special case of p=1—p=1%sinceq = N1/2", the probability of F;
is simply the expression of Fy in the form of Equation (2) with each variable re-
placed by 1. For the general case, however, this is not true, and the expression for
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probability should be slightly modified. Each uncomplemented variable shoulqd he
replaced by p, and each complemented variable should be replaced by (1 - o).
Thus the probability of I, becomes

a=plp+ (1 —pplp + (1 — p)pl}.

Now the problem reduces to: Given p, (1 — p) and ¢ (m depends on ey
tolerance and may be assumed io be given too), to find the threshold function F,.

The procedure of doing this is as follows:

Step (1). If ¢ < p, divide ¢; by p. If the quotient is still less than p, dividej;
by p again. Repeat this until the quotient is greater than or equal to p. Deng,
the number of times of division by d; . Thus ¢ is already divided by p® to be.
come greater than or equal to p. Then subtract p from the last quotient, whieh i
greater or equal to p, to obtain the difference D. Go to step (3).

Step (2). If ¢ = p, subtract p from ¢, to obtain the difference D, Go t
step (3).

Step (3). If the difference in Step (1) or (2) is zero, the procedure is already
completed. If the difference D is greater than zero, divide D by (1 — p). Get the
quotient ¢;’. Then treat ¢, as g1 and repeat steps (1) or (2). In step (1) the new
number of times of division is denoted by de .

Step (4). Repeat steps (1) through (3) until the mixed highest power of
p and (1 — p) (in the last term) is equal to m.

Step (5). Arrange the p’s and (1 — p)’s in the following form, which is equal
or closest to ¢; for the given m:

a=pp+ Q= p)p”p + A — p)p(p + - )} (3)

Step (6). Form F; according to Equation (3), with each p replaced by an un-
complemented variable and each (1 — p) replaced by a complemented variable,
starting from z; with each uncomplemented variable appearing once and only
once in the ascending order of the subscript and with each complemented van-
able having the same subscript as the preceding uncomplemented variable.

Let us consider the above example again, but with different p and (1 — p).

Example 2.

p =07
1—9p=203
¢ = 0.32
g2 = 0.27
¢ = 0.23
qs = 0.18
m =7
(1) Determination of F; .
@ =032 <07
032 _ o457 < 07

0.7
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0.457 .
07T 0633 < 0.7
0.653
= Q 7
07 0947 > 0.7
d1 = 3
0.947 — 0.7 = 0.247
0.247
—— 2' i
03 0.823 > 0.7
dg =0
0.823 — 0.7 = 0.125
0.123
o3 = 041 < 0.7
0.41 o
0.586
o7 T 0.837 > 0.7
Clg = 2

The mixed highest power is already 7. So we stop here.
g1 = 0.32
=~ 0.7°00.7 4+ 0.3(0.7 4 0.3 X 0.7)]
= 0.327
Fi = awasles + Zalas + Tsaers)]
= waxs(xy + x5 + Ter7)

The minimal assignment of integral weights is

== =9 G=06=2 ag=ua=1 T=1T7.

{2)  Determination of ¥, .

g+ ¢ = 032 + 027 = 059 <07

0.59
— = 0.84 .7
07 0843 > 0
Cll = 1
0.843 — 0.7 = 0.143

0.143

—= =04 i
0a 0477 <0

0477 _ 0.681 < 0.7

0.7

273
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051 ~ 0973 > 07
dy = 2
0973 — 0.7 = 0273
Q‘é? = 091 > 07
dy =0
091 — 0.7 = 0.21
o2~ 01 =01
dy =0
07 —-07=0
The difference is equal to zero. So we stop here.
@+ g2 = 0.59
=07 {07 + 03 X 0.7°0.7 + 0.3(0.7 + 0.3 X 0.7}
= 0.590

Fo = z3{ws + Eatawdas + Ts(xs + Foxr)])
= mes + 2xa(2s + 25 + 27)]
Py = F.F
a =10, gy =7 G=a=3, =0 =0 =1
T =17
(3) Determination of F; .
g1+ g+ g5 = 0.32 4 027 4 0.23 = 0.82 > 0.7

d1 = 0

0.82 — 0.7 = 0.12
0.12
53 040 < 0.7
040
o7 = 0571 <07
0.571
o5 = 0816 > 0.7

d2 =
0.816 — 0.7 = 0.116

0.116
o5 = 0387 <07
0387 _ 0553 < 07

0.7
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0.553
,,,,,,,,,,,,, D= .78 .
%, 90 > 0.7
0790 — 0.7 = 0.090
0.090 o
e w==m (e < 0.
03 0.300 < 0.7

The mixed highest power of p and (1 — p) is already 7. So we stop here.
@+ g2+ ¢ =082
>~ 0.7 4+ 0.3 X 0.7°0.7 + 0.3 X 0.7(0.7 + 0.3)]
= 0.7 + 0.3 X 0.7°(0.7 + 0.3 X 0.7%)
= (.825
Fy = 2y + Frwows(2s -+ Tilss)
= x1 -+ xows{ay -+ 2s26)
Fy = FI\FY
=8 @w=a=3, G=2 G=aga=1 a=0
T= 8
(4) Determination of 7, .
@+ g2+ gz + g = 0.32 + 0.27 4 0.23 4 0.18 = 1.00
Fy=1
P/ = PAFF, = F\F,F/

7. Error Bounds

The error in using threshold logic elements as a probability transformer de-
pends on 7. The larger m, the smaller the error. For p = 1 — p = %, since N, is
the closest integer to 2"gs, the error bound is half of the probability of the
m-tuple, or 3 X 1/2" = 1/2™". For some probabilities, such as ¢; and g3 in the
above example, the probability is the difference between two probabilities each
with an error bound of 1/(2"**). So the error bound is twice this, or

In the case of m = 7,

1 1
€= 5= 58 = 0.0078 = 0.78%.
~Forp s 1 — p # 1, each m-tuple has a different probability. The error bound
s more difficult to calculate. It is not attempted to determine the exact error
bound here. However, it is roughly estimated that for the same m, the error
bound for p 3 1 = p 5 1 is a little larger than that forp = 1 — p = }, as in-
dicated in the above examples,
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8. Sampling or Clock Pulse

It is assumed that the input symbol is random. Thus the input at time !
independent of the inputs at any previous time. However, in forming the ney
input symbols, m delay units are used, and the input symbols are therefor
dependent upon the past m input symbols. In order to obtain random outpy;
variables completely independent of past values, it is necessary to take values of
either the input or the output at time intervals of at least m times the time intervg)
of the input. For level inputs and outputs, this can be accomplished by using 5
sampler at the input or the output synchronized to the input time and with 5
sampling period T = mr, where 7 is the period of input time interval. In the cage
of pulse inputs and outputs, clock pulses with a period of 7' = mr can be applied
to the input delay units.

9. Conclusions

From the above analysis it is seen that probability transformer can be realized
with threshold logic elements, to a reasonable degree of accuracy. For s outpu
probabilities, if one threshold logic element is used for each function, only
s — 1 threshold logic elements are required, together with [log. s] or gates. 8o
the circuit thus realized is much simpler than a corresponding sequential circuit
or that realized with Axp and or gates. High accuracy can be obtained by using
larger number of delay units. In that case the weights of the variables tend to be
large. However, this can be remedied by the decomposition of each threshold
logic element into two or more threshold logic elements. Thus small error tolerance
can be achieved at the expense of number of threshold logic elements, and the
resulting realization can still be fairly simple. So the use of threshold logic ele-
ments for probability transformation appears to be a neat and simple circuit
realization.

Recervep July, 1964
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